Application Note 1061

C/S determination in limestone

Suitable analyzers

■ ELEMENTRAC CS-d (Resistance Furnace)

Used accessories

- Disposable porcelain boats (90160)
- Suitable calibration material

Application Settings

I) General

Temperature: 1450 °C (±20 °C tolerance)

Stabilize baseline: Enable
Stability: 0.01 V
Minimum time: 20 sec
Maximum time: 60 sec
Flow: 180 l/h
Drift compensation: Disable

II) Analysis

Channel	Min time [sec]	Max time [sec]	Integration delay [sec]	Peak max [V]	Comperator level [mv]	Comperator peak [%]
High Carbon	90	300	5	8	20	1
Low Sulfur	200	300	5	8	5	1

C/S determination in limestone

Sample preparation

Dry the sample to constant mass at 105°C (at least 1 hour).

Procedure

- Prepare and clean the ELTRA analyzer (e.g. exchange anhydrone, filter, boat stop) and set the furnace temperature to 1450°C
- Run at least three warm up samples (e.g. ELTRA 92511-3020) with a medium sample weight of 250 mg until the results are consistent
- Calibrate the system with a suitable calibration material (NIST or other):
- (1) Weigh in 250 mg of sample in a porcelain boat (90160)
- (2) Start analysis (F5 Button)
- (3) Wait until baseline is stable (Look at message in ELEMENTS software and wait for green light at the resistance furnace)
- (4) Load the sample into the furnace and wait until the PC calculates
- (5) Remove combustion boat

Repeat steps (1) - (5) at least three times; Mark the results and use the calibration function in the software.

-> Now start with the actual analysis.

Typical results						
ELTRA 90812-3002 (LOT 101602) *1						
Weight (mg)	Carbon (%)	Sulfur (%)				
258.6	11.6	0.44				
252.6	11.6	0.43				
271.6	11.6	0.43				
269.5	11.9	0.41				
280.6	11.6	0.42				
251.7	11.6	0.40				
269.7	11.6	0.40				
275.7	11.7	0.40				
273.2	11.7	0.40				
289.7	11.7	0.40				
Average Values						
	11.70	0.41				
Deviation / Relative deviation (%)						
	0.09 (0.8%)	0.01 (3.4%)				

 $^{^{*1}}$ certified values: C: 11.72 % \pm 0.40 ; S: 0.418 % \pm 0.04

